

产品承认书

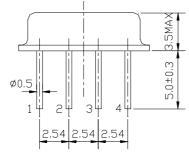
产品名称: 声表面谐振器 产品型号: R330M 产品体积: F11-DIP Product Name: SAW Product Model: R330M Product volume: F11-DIP

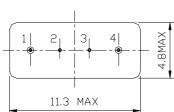
承认后请回传一份 PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL

承认结果 CONCLUSION	客户签名 SIGNATURE	客户承认章 STAMP	日期 DATE	备注 REMARK
合格 ACCEPT				
不合格 REJECT				


制表:	童娟	审核:	(公章)
			(4 =)

尊敬的客户:请您抽取一点时间,在7-10个工作日内将承认书回签,若未回签,已视默认.谢谢合作!!!


SAMPLE APPROVAL SHEET


1. Package Dimension

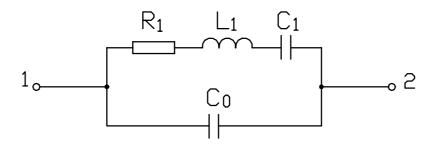
(F-11)

Pin No. Function

- 1. Input
- 2. Ground
- 3. Ground
- 4. Output

2. Marking

LUO 330.00


1. Color: Black or Blue

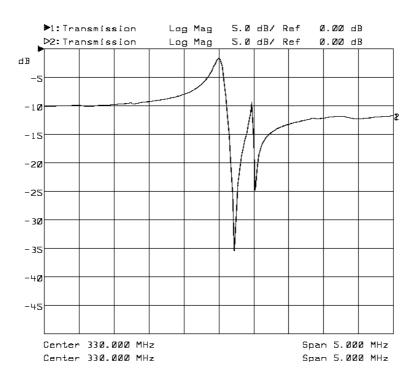
2. D: Manufacture's logo

3. R1: One-port SAW Resonator

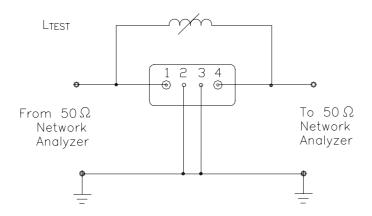
4. 330.00: Center Frequency (MHz)

3. Equivalent LC Model

4. Performance


4.1 Maximum Rating

DC Voltage V _{DC}	10V
AC Voltage V _{PP}	10V (50Hz/60Hz)
Operation Temperature	-40 °C to +85 °C
Storage Temperature	-45 °C to +85 °C
RF Power Dissipation	0dBm


4.2 Electronic Characteristics

Item		Units	Minimum	Typical	Maximum
Center Frequency fo		MHz	329.925	330.00	330.075
Insertion Loss		dB	_	1.3	2.5
Quality Factor	Unloaded Q		_	10,700	_
	50 Ω Loaded Q		_	2,000	_
Tem perature	Turnover Temperature	$^{\circ}\!\mathbb{C}$	_	39	_
Stability	Turnover Frequency	KHz	_	fo+2.7	_
	Freq. Temp. Coefficient	ppm/°C²	_	0.032	_
Frequency Aging		ppm/yr	_	< <u>±</u> 10	_
DC Insulation Resistance		ΜΩ	1.0	_	_
RF Equivalent RLC Model	Motional Resistance R ₁	Ω	_	25	32
	Motional Inductance L ₁	μН	_	130.92	_
	Motional Capacitance C ₁	fF	_	1.78	_
	Shunt Static Capacitance C _O	pF	1.9	2.2	2.5

4.3 Frequency Characteristics

4.4 Test Circuit

Note: Reference temperature shall be $25\pm2^{\circ}\mathbb{C}$. However, the measurement may be carried out at $5^{\circ}\mathbb{C}$ to $35^{\circ}\mathbb{C}$ unless there is a dispute.

5. Reliability

- 5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s², duration 6 milliseconds.
- 5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.
- 5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.
- 5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for 48 hours, then kept at room temperature for 2 hours.
- 5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-25^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for 48 hours, then kept at room temperature for 2 hours.
- 5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80° C for 30 minutes \rightarrow 25°C for 5 minutes \rightarrow -25°C for 30 minutes)than kept at room temperature for 2 hours.
- 5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).
- 5.8 Solderability: Solderability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.