

产品承认书	SAMPLE APPROVAL SHEET			
产品名称: _ 声表面谐振器	Product Name: SAW			
产品型号: R315M	Product Model: R315M			
产品体积:F11-DIP	Product volume: F11-DIP			

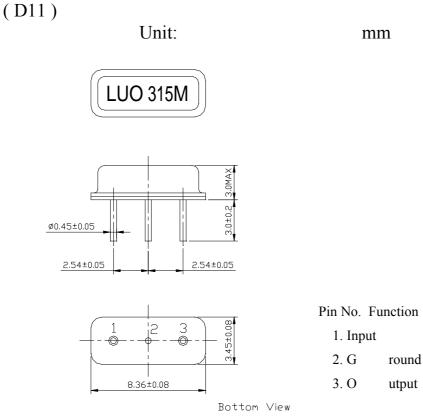
承认后请回传一份 PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL

承认结果 CONCLUSION	客户签名 SIGNATURE	客户承认章 STAMP	日期 DATE	备注 REMARK
合格 ACCEPT				
不合格 REJECT				

制表: 童娟

审核:

(公章)

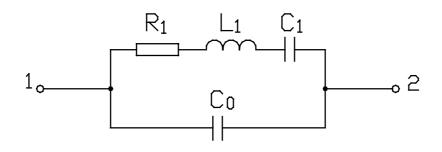

尊敬的客户:请您抽取一点时间,在7-10个工作日内将承认书回签,若未回签,已视默认.谢谢合作!!!

深圳市金洛电子有限公司

电话:0755-27837162

http://www.jinluodz.com

1. Package Dimension



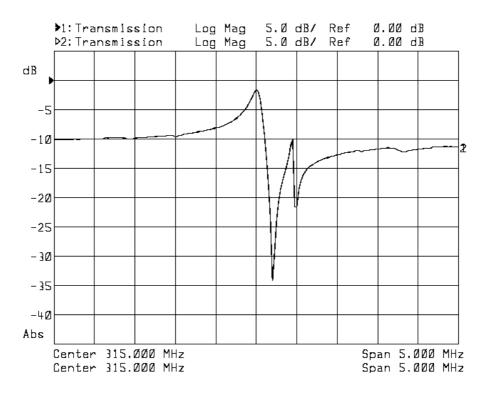
2. Marking

LUO 315.00

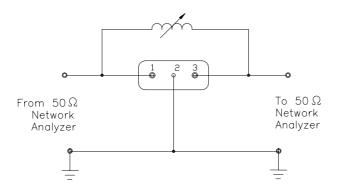
- 1. Color: Black or Blue
- 2. D: Manufacture's logo
- 3. R1: One-port SAW Resonator
- 4. 315.00: Center Frequency (MHz)

3. Equivalent LC Model

4. Performance


4.1 Maximum Rating

DC Voltage V _{DC}	10V
AC Voltage V _{PP}	10V (50Hz/60Hz)
Operation Temperature	-40 to +85
Storage Temperature	-45 to +85
RF Power Dissipation	0dBm


4.2 Electronic Characteristics

Item		Units	Minimum	Typical	Maximum
Center Frequency fo		MHz	314.925	315	315.075
Insertion Loss		dB	—	1.3	2.5
Quality Factor	Unloaded Q	—	—	12,000	—
	50 Loaded Q	—	—	1,900	—
Tem perature	Turnover Temperature		10	25	40
Stability	Turnover Frequency	KHz		fo	—
	Freq.Temp.Coefficient	ppm/ ²	—	0.037	—
Frequency Aging		ppm/yr		<±10	
DC Insulation Resistance		М	1.0	_	
RF Equivalent RLC Model	Motional Resistance R ₁		—	23	29
	Motional Inductance L ₁	μH		115.2	
	Motional Capacitance C ₁	fF	—	2.2	—
	Shunt Static Capacitance Co	pF	2.1	2.4	2.7

4.3 Frequency Characteristics

4.4 Test Circuit

Note: Reference temperature shall be 25 ± 2 . However, the measurement may be carried out at 5 to 35 unless there is a dispute.

5. Reliability

5.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392 m/s^2 , duration 6 milliseconds.

5.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz, amplitude 1.5 mm, for 2 hours.

5.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 kgs weight for 10 seconds towards an axis of each terminal.

5.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the 85 ± 2 for 48 hours, then kept at room temperature for 2 hours.

5.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the -25 ± 2 for 48 hours, then kept at room temperature for 2 hours.

5.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing (one cycle: 80 for 30 minutes 25 for 5 minutes -25 for 30 minutes)than kept at room temperature for 2 hours.

5.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260 for 10 ± 1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).

5.8 Solder Ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at 230 ± 5 for 5 ± 1 seconds.

6. Remarks

6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid

ultrasonic cleaning.

6.3 Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.