

产品承认书		SAMPLE APPROVAL SHEET		
产品名称:	声表面谐振器	Product Name:	SAW	
产品型号:	R154M	Product Model:	R154M	
产品体积:	F11-DIP	Product volume:	F11-DIP	

承认后请回传一份 PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL

承认结果 CONCLUSION	客户签名 SIGNATURE	客户承认章 STAMP	日期 DATE	备注 REMARK
合格 ACCEPT				
不合格 REJECT				

制表: 童娟

审核:

(公章)

尊敬的客户:请您抽取一点时间,在7-10个工作日内将承认书回签,若未回签,已视默认.谢谢合作!!!

深圳市金洛电子有限公司

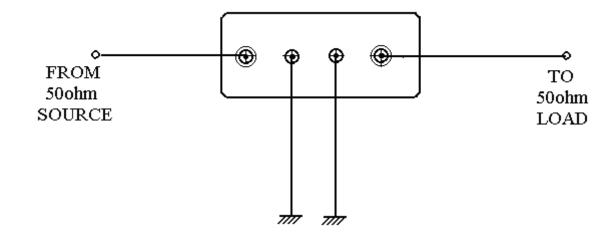
电话:0755-27837162

http://www.jinluodz.com

SAW RESONATOR

1. SCOPE

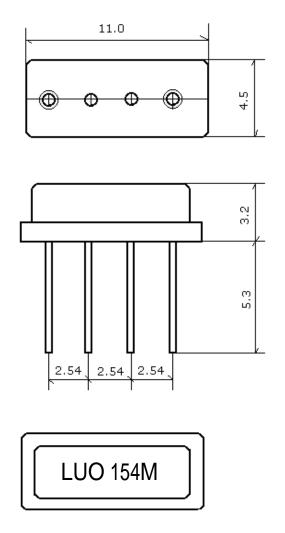
This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


2. ELECTRICAL SPECIFICATION

DC Voltage VDC	30V		
AC Voltage Vpp	10V50Hz/60Hz		
Operation temperature	-40°℃ to +85°℃		
Storage temperature	-45℃ to +85℃		
RF Power Dissipation	0dBm		

2.2Electronic Characteristics

Item		Unites	Minimum	Typical	Maximum
Center Frequency		MHz	153.925	154.000	154.075
Insertion Loss		dB		2.2	2.5
Quality Factor Unload Q			14000	14500	
50Ω Loaded Q			3000	4000	
Temperature	Furnover Temperature	°C	10	25	40
Stability	Freq.temp.Coefficient	ppm/°C2		0.037	
Frequency Aging		ppm/yr		<±10	
DC. Insulation Resistance		MΩ	1.0		
RF Equivalent RLC Model	Motional Resistance R1	Ω		28	30
	Motional Inductance L1	μH		532.63	
	Motional Capacitance C1	fF		2.0053	
Transducer Static Capacitance		pF		2.6	


3. TEST CIRCUIT

SAW RESONATOR

LUO-F11-154M

4. DIMENSION

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to $+85^{\circ}$ C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-2 Low temperature exposure

Subject the device to -40° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-3 Temperature cycling

Subject the device to a low temperature of -40° C for 30 minutes. Following by a high temperature of $+85^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2.2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2.2.

5-5 Solderability

SAW RESONATOR

LUO-F11-154M

Subject the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2.2.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in 2.2.

5-7 Vibration

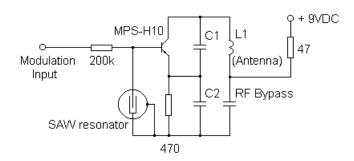
Subject the device to the vibration for 1 hour each in x, y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2.2.

6. REMARK

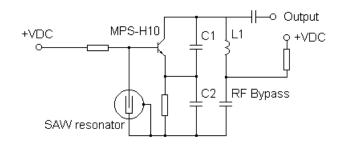
6.1 Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning


Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering


Only leads of component may be soldered. Please avoid soldering another part of component.

7.TYPCIAL APPLICATION CIRCUITS

Typical low-power Transmitter Application

Typical Local Oscillator Application

